On Artin's conjecture on average and short character sums




Klurman, Oleksiy; Shparlinski, Igor E.; Teräväinen, Joni

PublisherWILEY

HOBOKEN

2025

Bulletin of the London Mathematical Society

BULLETIN OF THE LONDON MATHEMATICAL SOCIETY

B LOND MATH SOC

15

0024-6093

1469-2120

DOIhttps://doi.org/10.1112/blms.70103

https://doi.org/10.1112/blms.70103

https://research.utu.fi/converis/portal/detail/Publication/498668440



Let Na(x) denote the number of primes up to x for which the integer a is a primitive root. We show that Na(x) satisfies the asymptotic predicted by Artin's conjecture for almost all 1 ⩽ a ⩽ exp((log log x)2). This improves on a result of Stephens (1969). A key ingredient in the proof is a new short character sum estimate over the integers, improving on the range of a result of Garaev (2006).


Australian Research Council, Grant/Award Numbers: DP230100530, DP230100534; Knut and AliceWallenberg
Fellowship; European Union’s Horizon Europe Research and Innovation Programme under Marie Skłodowska-Curie, Grant/Award Number: 101058904; Academy of Finland, Grant/Award Number: 362303


Last updated on 2025-31-07 at 08:37