A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On Artin's conjecture on average and short character sums




TekijätKlurman, Oleksiy; Shparlinski, Igor E.; Teräväinen, Joni

KustantajaWILEY

KustannuspaikkaHOBOKEN

Julkaisuvuosi2025

JournalBulletin of the London Mathematical Society

Tietokannassa oleva lehden nimiBULLETIN OF THE LONDON MATHEMATICAL SOCIETY

Lehden akronyymiB LOND MATH SOC

Sivujen määrä15

ISSN0024-6093

eISSN1469-2120

DOIhttps://doi.org/10.1112/blms.70103

Verkko-osoitehttps://doi.org/10.1112/blms.70103

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/498668440


Tiivistelmä

Let Na(x) denote the number of primes up to x for which the integer a is a primitive root. We show that Na(x) satisfies the asymptotic predicted by Artin's conjecture for almost all 1 ⩽ a ⩽ exp((log log x)2). This improves on a result of Stephens (1969). A key ingredient in the proof is a new short character sum estimate over the integers, improving on the range of a result of Garaev (2006).


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
Australian Research Council, Grant/Award Numbers: DP230100530, DP230100534; Knut and AliceWallenberg
Fellowship; European Union’s Horizon Europe Research and Innovation Programme under Marie Skłodowska-Curie, Grant/Award Number: 101058904; Academy of Finland, Grant/Award Number: 362303


Last updated on 2025-31-07 at 08:37