A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
On Artin's conjecture on average and short character sums
Tekijät: Klurman, Oleksiy; Shparlinski, Igor E.; Teräväinen, Joni
Kustantaja: WILEY
Kustannuspaikka: HOBOKEN
Julkaisuvuosi: 2025
Journal: Bulletin of the London Mathematical Society
Tietokannassa oleva lehden nimi: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY
Lehden akronyymi: B LOND MATH SOC
Sivujen määrä: 15
ISSN: 0024-6093
eISSN: 1469-2120
DOI: https://doi.org/10.1112/blms.70103
Verkko-osoite: https://doi.org/10.1112/blms.70103
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/498668440
Let Na(x) denote the number of primes up to x for which the integer a is a primitive root. We show that Na(x) satisfies the asymptotic predicted by Artin's conjecture for almost all 1 ⩽ a ⩽ exp((log log x)2). This improves on a result of Stephens (1969). A key ingredient in the proof is a new short character sum estimate over the integers, improving on the range of a result of Garaev (2006).
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
Australian Research Council, Grant/Award Numbers: DP230100530, DP230100534; Knut and AliceWallenberg
Fellowship; European Union’s Horizon Europe Research and Innovation Programme under Marie Skłodowska-Curie, Grant/Award Number: 101058904; Academy of Finland, Grant/Award Number: 362303