Modulus estimates of semirings with applications to boundary extension problems
: Golberg, Anatoly; Sugawa, Toshiyuki; Vuorinen, Matti
Publisher: SPRINGER BASEL AG
: BASEL
: 2025
: Analysis and Mathematical Physics
: ANALYSIS AND MATHEMATICAL PHYSICS
: ANAL MATH PHYS
: 22
: 15
: 1
: 27
: 1664-2368
: 1664-235X
DOI: https://doi.org/10.1007/s13324-025-01019-z
: https://doi.org/10.1007/s13324-025-01019-z
: https://research.utu.fi/converis/portal/detail/Publication/485070187
In our previous paper (Golberg et al. in Comput Methods Funct Theory 20(3-4):539-558, 2020), we proved that the complementary components of a ring domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document} with large enough modulus may be separated by an annular ring domain and applied this result to boundary correspondence problems under quasiconformal mappings. In the present paper, we continue this work and investigate boundary extension problems for a larger class of mappings.