Modulus estimates of semirings with applications to boundary extension problems




Golberg, Anatoly; Sugawa, Toshiyuki; Vuorinen, Matti

PublisherSPRINGER BASEL AG

BASEL

2025

Analysis and Mathematical Physics

ANALYSIS AND MATHEMATICAL PHYSICS

ANAL MATH PHYS

22

15

1

27

1664-2368

1664-235X

DOIhttps://doi.org/10.1007/s13324-025-01019-z

https://doi.org/10.1007/s13324-025-01019-z

https://research.utu.fi/converis/portal/detail/Publication/485070187



In our previous paper (Golberg et al. in Comput Methods Funct Theory 20(3-4):539-558, 2020), we proved that the complementary components of a ring domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document} with large enough modulus may be separated by an annular ring domain and applied this result to boundary correspondence problems under quasiconformal mappings. In the present paper, we continue this work and investigate boundary extension problems for a larger class of mappings.

Last updated on 2025-12-03 at 08:28