A1 Refereed original research article in a scientific journal

Modulus estimates of semirings with applications to boundary extension problems




AuthorsGolberg, Anatoly; Sugawa, Toshiyuki; Vuorinen, Matti

PublisherSPRINGER BASEL AG

Publishing placeBASEL

Publication year2025

JournalAnalysis and Mathematical Physics

Journal name in sourceANALYSIS AND MATHEMATICAL PHYSICS

Journal acronymANAL MATH PHYS

Article number22

Volume15

Issue1

Number of pages27

ISSN1664-2368

eISSN1664-235X

DOIhttps://doi.org/10.1007/s13324-025-01019-z

Web address https://doi.org/10.1007/s13324-025-01019-z

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/485070187


Abstract
In our previous paper (Golberg et al. in Comput Methods Funct Theory 20(3-4):539-558, 2020), we proved that the complementary components of a ring domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document} with large enough modulus may be separated by an annular ring domain and applied this result to boundary correspondence problems under quasiconformal mappings. In the present paper, we continue this work and investigate boundary extension problems for a larger class of mappings.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-12-03 at 08:28