A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Modulus estimates of semirings with applications to boundary extension problems




TekijätGolberg, Anatoly; Sugawa, Toshiyuki; Vuorinen, Matti

KustantajaSPRINGER BASEL AG

KustannuspaikkaBASEL

Julkaisuvuosi2025

JournalAnalysis and Mathematical Physics

Tietokannassa oleva lehden nimiANALYSIS AND MATHEMATICAL PHYSICS

Lehden akronyymiANAL MATH PHYS

Artikkelin numero22

Vuosikerta15

Numero1

Sivujen määrä27

ISSN1664-2368

eISSN1664-235X

DOIhttps://doi.org/10.1007/s13324-025-01019-z

Verkko-osoitehttps://doi.org/10.1007/s13324-025-01019-z

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/485070187


Tiivistelmä
In our previous paper (Golberg et al. in Comput Methods Funct Theory 20(3-4):539-558, 2020), we proved that the complementary components of a ring domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document} with large enough modulus may be separated by an annular ring domain and applied this result to boundary correspondence problems under quasiconformal mappings. In the present paper, we continue this work and investigate boundary extension problems for a larger class of mappings.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-12-03 at 08:28