A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Modulus estimates of semirings with applications to boundary extension problems
Tekijät: Golberg, Anatoly; Sugawa, Toshiyuki; Vuorinen, Matti
Kustantaja: SPRINGER BASEL AG
Kustannuspaikka: BASEL
Julkaisuvuosi: 2025
Journal: Analysis and Mathematical Physics
Tietokannassa oleva lehden nimi: ANALYSIS AND MATHEMATICAL PHYSICS
Lehden akronyymi: ANAL MATH PHYS
Artikkelin numero: 22
Vuosikerta: 15
Numero: 1
Sivujen määrä: 27
ISSN: 1664-2368
eISSN: 1664-235X
DOI: https://doi.org/10.1007/s13324-025-01019-z
Verkko-osoite: https://doi.org/10.1007/s13324-025-01019-z
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/485070187
In our previous paper (Golberg et al. in Comput Methods Funct Theory 20(3-4):539-558, 2020), we proved that the complementary components of a ring domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document} with large enough modulus may be separated by an annular ring domain and applied this result to boundary correspondence problems under quasiconformal mappings. In the present paper, we continue this work and investigate boundary extension problems for a larger class of mappings.
Ladattava julkaisu This is an electronic reprint of the original article. |