Self-avoiding walks of specified lengths on rectangular grid graphs
: Major László, Németh László, Pahikkala Anna, Szalay László
Publisher: Birkhauser
: 2023
: Aequationes Mathematicae
: Aequationes Mathematicae
: 1420-8903
DOI: https://doi.org/10.1007/s00010-023-00977-8
: https://link.springer.com/article/10.1007/s00010-023-00977-8
: https://research.utu.fi/converis/portal/detail/Publication/180426856
The investigation of self-avoiding walks on graphs has an extensive literature. We study the notion of wrong steps of self-avoiding walks on rectangular shape n×m grids of square cells (Manhattan graphs) and examine some general and special cases. We determine the number of self-avoiding walks with one and with two wrong steps in general. We also establish some properties, like unimodality and sum of the rows of the Pascal-like triangles corresponding to the walks. We also present particular recurrence relations on the number of self-avoiding walks on the n×2 grids with any specified number of wrong steps.