A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Self-avoiding walks of specified lengths on rectangular grid graphs




TekijätMajor László, Németh László, Pahikkala Anna, Szalay László

KustantajaBirkhauser

Julkaisuvuosi2023

JournalAequationes Mathematicae

Tietokannassa oleva lehden nimiAequationes Mathematicae

eISSN1420-8903

DOIhttps://doi.org/10.1007/s00010-023-00977-8

Verkko-osoitehttps://link.springer.com/article/10.1007/s00010-023-00977-8

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/180426856


Tiivistelmä

The investigation of self-avoiding walks on graphs has an extensive literature. We study the notion of wrong steps of self-avoiding walks on rectangular shape n×m grids of square cells (Manhattan graphs) and examine some general and special cases. We determine the number of self-avoiding walks with one and with two wrong steps in general. We also establish some properties, like unimodality and sum of the rows of the Pascal-like triangles corresponding to the walks. We also present particular recurrence relations on the number of self-avoiding walks on the n×2 grids with any specified number of wrong steps.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-27-03 at 21:53