A1 Refereed original research article in a scientific journal
Self-avoiding walks of specified lengths on rectangular grid graphs
Authors: Major László, Németh László, Pahikkala Anna, Szalay László
Publisher: Birkhauser
Publication year: 2023
Journal: Aequationes Mathematicae
Journal name in source: Aequationes Mathematicae
eISSN: 1420-8903
DOI: https://doi.org/10.1007/s00010-023-00977-8
Web address : https://link.springer.com/article/10.1007/s00010-023-00977-8
Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/180426856
The investigation of self-avoiding walks on graphs has an extensive literature. We study the notion of wrong steps of self-avoiding walks on rectangular shape n×m grids of square cells (Manhattan graphs) and examine some general and special cases. We determine the number of self-avoiding walks with one and with two wrong steps in general. We also establish some properties, like unimodality and sum of the rows of the Pascal-like triangles corresponding to the walks. We also present particular recurrence relations on the number of self-avoiding walks on the n×2 grids with any specified number of wrong steps.
Downloadable publication This is an electronic reprint of the original article. |