A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Predicting stock price and spread movements from news
Tekijät: Wistbacka Pontus, Rönnqvist Samuel, Vozian Katia, Sagade Satchit
Toimittaja: Bui Tung X
Konferenssin vakiintunut nimi: Hawaii International Conference on System Sciences
Kustantaja: IEEE Computer Society
Julkaisuvuosi: 2021
Kokoomateoksen nimi: Proceedings of the 54th Annual Hawaii International Conference on System Sciences
Tietokannassa oleva lehden nimi: Proceedings of the Annual Hawaii International Conference on System Sciences
Aloitussivu: 1593
Lopetussivu: 1600
ISBN: 978-0-9981331-4-0
ISSN: 2572-6862
eISSN: 2572-6862
DOI: https://doi.org/10.24251/HICSS.2021.192
Verkko-osoite: http://hdl.handle.net/10125/70804
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/66564290
We explore several ways of using news articles and financial data to train neural network machine learning models to predict shock events in high-frequency market data, and aggregated shock episodes. We investigate the use of price movements in this context, and separately at a daily interval as well. We describe in detail how training sets are created from our data sources and how our machine learning models are trained. We find that pairing company-related news text with events or movements in financial time series proves less straight-forward than the literature would indicate. We discuss possible reasons for negative results, especially relating to the combination of minute-level news and millisecond-level market data.
Ladattava julkaisu This is an electronic reprint of the original article. |