Copolymers of bipyridinium and metal (Zn & Ni) porphyrin derivatives; theoretical insights and electrochemical activity towards CO2
: Kochrekar Sachin, Kalekar Ajit, Mehta Shweta, Damlin Pia, Salomäki Mikko, Granroth Sari, Meltola Niko, Joshi Kavita, Kvarnström Carita
Publisher: ROYAL SOC CHEMISTRY
: 2021
: RSC Advances
: RSC ADVANCES
: RSC ADV
: 11
: 32
: 19844
: 19855
: 12
DOI: https://doi.org/10.1039/d1ra01945g
: https://doi.org/10.1039/D1RA01945G
: https://research.utu.fi/converis/portal/detail/Publication/66386496
This study reports the electropolymerization of novel keto functionalized octaethyl metal porphyrins (Zn2+ and Ni2+) in the presence of 4,4 '-bipyridine (4,4 '-bpy) as a bridging nucleophile. The polymer films were characterized by electrochemical, spectroscopic (UV-Vis, XPS, FT-IR and Raman spectroscopy) and imaging (AFM and SEM) techniques. The absorption and electronic spectra confirm the presence of both porphyrin and 4,4 '-bipyridine units in the film. The surface morphology reveals homogeneous film deposition with average roughness values of approx. 8 nm. The theoretical studies performed offered insights into the interplay of different metal centres (Zn2+ and Ni2+) and the keto functionality of the porphyrin unit in the formation of copolymer films. The electrochemical interaction of polymer films with CO2 suggests a reversible trap and release of CO2 with low energy barriers for both the polymers.