A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Automatically Mapping Ad Targeting Criteria between Online Ad Platforms




TekijätSalminen Joni, Jung Soon-Gyo, Jansen Bernard J.

ToimittajaBui Tung X.

Konferenssin vakiintunut nimiHawaii International Conference on System Sciences

Julkaisuvuosi2021

Kokoomateoksen nimiThe proceedings of the 54th Hawaii International Conference on System Sciences 2021

Aloitussivu940

Lopetussivu948

ISBN978-0-9981331-4-0

ISSN2572-6862

DOIhttps://doi.org/10.24251/HICSS.2021.115

Verkko-osoitehttp://hdl.handle.net/10125/70727

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/Publication/50746281


Tiivistelmä

Targeting criteria in online advertising differ across platforms and
frequently change. Because advertisers are increasingly taking a
multi-channel approach to online marketing, there is a need to
automatically map the targeting criteria between ad platforms. In this
research, we test two algorithmic approaches  Word2Vec and WordNet 
for mapping ad targeting criteria between Google Ads and Facebook Ads.
The results show that Word2Vec outperforms WordNet in finding matches
(97.5% vs. 63.6%), covering different criteria (20.0% vs. 13.5%), and
having higher similarity scores. However, WordNet outperforms Word2Vec
in expert evaluation (Mean Opinion Score = 3.05 vs. 2.46), implying that
algorithmic performance metrics may not correlate with expert ratings.
Overall, due to specific requirements for mapping ad targeting criteria,
automatic means do not (at least yet) offer a satisfactory solution for
replacing human judgment.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 22:06