A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Automatically Mapping Ad Targeting Criteria between Online Ad Platforms
Tekijät: Salminen Joni, Jung Soon-Gyo, Jansen Bernard J.
Toimittaja: Bui Tung X.
Konferenssin vakiintunut nimi: Hawaii International Conference on System Sciences
Julkaisuvuosi: 2021
Kokoomateoksen nimi: The proceedings of the 54th Hawaii International Conference on System Sciences 2021
Aloitussivu: 940
Lopetussivu: 948
ISBN: 978-0-9981331-4-0
ISSN: 2572-6862
DOI: https://doi.org/10.24251/HICSS.2021.115
Verkko-osoite: http://hdl.handle.net/10125/70727
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/Publication/50746281
Targeting criteria in online advertising differ across platforms and 
frequently change. Because advertisers are increasingly taking a 
multi-channel approach to online marketing, there is a need to 
automatically map the targeting criteria between ad platforms. In this 
research, we test two algorithmic approaches  Word2Vec and WordNet  
for mapping ad targeting criteria between Google Ads and Facebook Ads. 
The results show that Word2Vec outperforms WordNet in finding matches 
(97.5% vs. 63.6%), covering different criteria (20.0% vs. 13.5%), and 
having higher similarity scores. However, WordNet outperforms Word2Vec 
in expert evaluation (Mean Opinion Score = 3.05 vs. 2.46), implying that
 algorithmic performance metrics may not correlate with expert ratings. 
Overall, due to specific requirements for mapping ad targeting criteria,
 automatic means do not (at least yet) offer a satisfactory solution for
 replacing human judgment.
Ladattava julkaisu  This is an electronic reprint of the original article.  |