D3 Artikkeli ammatillisessa konferenssijulkaisussa
Robust Modelling of Ordinal Survey Data Using Probabilistic Programming
Tekijät: Lahtinen, Aleksi; Edwards, James Rhys; Calmbach, Marc; Tautscher, Isabella; Lahti, Leo
Toimittaja: Arnold, Taylor; Fantoli, Margherita; Ros, Ruben
Konferenssin vakiintunut nimi: Computational Humanities Research
Julkaisuvuosi: 2025
Lehti: Anthology of Computers and the Humanities
Kokoomateoksen nimi: Computational Humanities Research 2025 : The proceedings of the Computational Humanities Research conference, held at the Luxembourg Centre for Contemporary and Digital History (C2DH) at the University of Luxembourg (December 9-12, 2025)
Vuosikerta: 3
Aloitussivu: 608
Lopetussivu: 625
DOI: https://doi.org/10.63744/eCwMjQ976nWf
Julkaisun avoimuus kirjaamishetkellä: Avoimesti saatavilla
Julkaisukanavan avoimuus : Kokonaan avoin julkaisukanava
Verkko-osoite: https://doi.org/10.63744/eCwMjQ976nWf
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/505865620
Surveys play a central role in much of the research conducted in the humanities and social sciences. A common data type encountered in surveys is the ordinal variable, which differs from nominal categorical variables. Several regression methods are available for analysing ordinal data, with the cumulative logistic model being one of the most widely used. However, ordinal survey data often present challenges, particularly in studies with small sample sizes, where some response categories and levels of explanatory variables can have low response rates. In such cases, classical statistical methods can produce unreliable or incomplete estimates. Here, we investigate the use of probabilistic programming, grounded in Bayesian analysis, as a more robust alternative for estimating category probabilities of ordinal variables and other model parameters. These models are better equipped to handle uncertainty and provide more reliable estimates, even in the presence of sparse data. We validate the approach with simulated data where the ground truth is known, and demonstrate the advantages of this approach by comparing it to its classical frequentist counterpart in the context of cultural participation and access survey.
Ladattava julkaisu This is an electronic reprint of the original article. |
Julkaisussa olevat rahoitustiedot:
This work received funding from the European Union funded under Grant No. 101095295 (OpenMusE) and Strategic Council of Finland Grant No. 352604 (Out of Despair).