A1 Refereed original research article in a scientific journal

Proposal of a Hybrid Neuro-Fuzzy-Based Controller to Optimize the Energy Efficiency of a Wind Turbine




AuthorsPeralta-Vasconez, Nathalia-Michelle; Pena-Pupo, Leonardo; Buestan-Andrade, Pablo-Andres; Nunez-Alvarez, Jose R.; Martinez-Garcia, Herminio

PublisherMDPI

Publication year2025

Journal: Sustainability

Article number3742

Volume17

Issue8

eISSN2071-1050

DOIhttps://doi.org/10.3390/su17083742

Publication's open availability at the time of reportingOpen Access

Publication channel's open availability Open Access publication channel

Web address https://www.mdpi.com/2071-1050/17/8/3742


Abstract

Optimizing wind turbine control is a major challenge due to wind variability and nonlinearity. This research seeks to improve the performance of wind turbines by designing and developing hybrid intelligent controllers that combine advanced artificial intelligence techniques. A control system combining deep neural networks and fuzzy logic was implemented to optimize the efficiency and operational stability of a 3.5 MW wind turbine. This study analyzed several deep learning models (LSTM, GRU, CNN, ANN, and transformers) to predict the generated power, using data from the SCADA system. The structure of the hybrid controller includes a fuzzy inference system with 28 rules based on linguistic variables that consider power, wind speed, and wind direction. Experiments showed that the hybrid-GRU controller achieved the best balance between predictive performance and computational efficiency, with an R2 of 0.96 and 12,119.54 predictions per second. The GRU excels in overall optimization. This study confirms intelligent hybrid controllers’ effectiveness in improving wind turbines’ performance under various operating conditions, contributing significantly to the field of wind energy.



Last updated on 2025-13-11 at 08:19