A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Proposal of a Hybrid Neuro-Fuzzy-Based Controller to Optimize the Energy Efficiency of a Wind Turbine
Tekijät: Peralta-Vasconez, Nathalia-Michelle; Pena-Pupo, Leonardo; Buestan-Andrade, Pablo-Andres; Nunez-Alvarez, Jose R.; Martinez-Garcia, Herminio
Kustantaja: MDPI
Julkaisuvuosi: 2025
Lehti: Sustainability
Artikkelin numero: 3742
Vuosikerta: 17
Numero: 8
eISSN: 2071-1050
DOI: https://doi.org/10.3390/su17083742
Julkaisun avoimuus kirjaamishetkellä: Avoimesti saatavilla
Julkaisukanavan avoimuus : Kokonaan avoin julkaisukanava
Verkko-osoite: https://www.mdpi.com/2071-1050/17/8/3742
Optimizing wind turbine control is a major challenge due to wind variability and nonlinearity. This research seeks to improve the performance of wind turbines by designing and developing hybrid intelligent controllers that combine advanced artificial intelligence techniques. A control system combining deep neural networks and fuzzy logic was implemented to optimize the efficiency and operational stability of a 3.5 MW wind turbine. This study analyzed several deep learning models (LSTM, GRU, CNN, ANN, and transformers) to predict the generated power, using data from the SCADA system. The structure of the hybrid controller includes a fuzzy inference system with 28 rules based on linguistic variables that consider power, wind speed, and wind direction. Experiments showed that the hybrid-GRU controller achieved the best balance between predictive performance and computational efficiency, with an R2 of 0.96 and 12,119.54 predictions per second. The GRU excels in overall optimization. This study confirms intelligent hybrid controllers’ effectiveness in improving wind turbines’ performance under various operating conditions, contributing significantly to the field of wind energy.