The Chowla conjecture and Landau–Siegel zeroes




Jaskari, Mikko; Sachpazis, Stelios

PublisherCambridge University Press (CUP)

2025

Mathematical Proceedings of the Cambridge Philosophical Society

Mathematical Proceedings of the Cambridge Philosophical Society

179

1

167

187

0305-0041

1469-8064

DOIhttps://doi.org/10.1017/S0305004125000271(external)

https://doi.org/10.1017/s0305004125000271(external)

https://research.utu.fi/converis/portal/detail/Publication/498491837(external)



Let k⩾2k⩾2 be an integer and let λλ be the Liouville function. Given k non-negative distinct integers h1,…,hkh1,…,hk, the Chowla conjecture claims that ∑n⩽xλ(n+h1)⋯λ(n+hk)=o(x)∑n⩽xλ(n+h1)⋯λ(n+hk)=o(x). An unconditional answer to this conjecture is yet to be found, and in this paper, we take a conditional approach. More precisely, we establish a non-trivial bound for the sums ∑n⩽xλ(n+h1)⋯λ(n+hk)∑n⩽xλ(n+h1)⋯λ(n+hk) under the existence of a Landau–Siegel zero for x in an interval that depends on the modulus of the character whose Dirichlet series corresponds to the Landau–Siegel zero. Our work constitutes an improvement over the previous related results of Germán and Kátai, Chinis and Tao and Teräväinen.


During the making of this work, M. Jaskari was being supported by the Academy of Finland grant no. 346307 and the University of Turku Graduate School UTUGS. S. Sachpazis acknowledges support from the Academy of Finland grant no. 333707.


Last updated on 2025-17-06 at 13:16