A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

The Chowla conjecture and Landau–Siegel zeroes




TekijätJaskari, Mikko; Sachpazis, Stelios

KustantajaCambridge University Press (CUP)

Julkaisuvuosi2025

JournalMathematical Proceedings of the Cambridge Philosophical Society

Tietokannassa oleva lehden nimiMathematical Proceedings of the Cambridge Philosophical Society

Vuosikerta179

Numero1

Aloitussivu167

Lopetussivu187

ISSN0305-0041

eISSN1469-8064

DOIhttps://doi.org/10.1017/S0305004125000271

Verkko-osoitehttps://doi.org/10.1017/s0305004125000271

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/498491837


Tiivistelmä

Let k⩾2k⩾2 be an integer and let λλ be the Liouville function. Given k non-negative distinct integers h1,…,hkh1,…,hk, the Chowla conjecture claims that ∑n⩽xλ(n+h1)⋯λ(n+hk)=o(x)∑n⩽xλ(n+h1)⋯λ(n+hk)=o(x). An unconditional answer to this conjecture is yet to be found, and in this paper, we take a conditional approach. More precisely, we establish a non-trivial bound for the sums ∑n⩽xλ(n+h1)⋯λ(n+hk)∑n⩽xλ(n+h1)⋯λ(n+hk) under the existence of a Landau–Siegel zero for x in an interval that depends on the modulus of the character whose Dirichlet series corresponds to the Landau–Siegel zero. Our work constitutes an improvement over the previous related results of Germán and Kátai, Chinis and Tao and Teräväinen.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Julkaisussa olevat rahoitustiedot
During the making of this work, M. Jaskari was being supported by the Academy of Finland grant no. 346307 and the University of Turku Graduate School UTUGS. S. Sachpazis acknowledges support from the Academy of Finland grant no. 333707.


Last updated on 2025-17-06 at 13:16