A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Boosting nonlinear predictability of macroeconomic time series




TekijätKauppi Heikki, Virtanen Timo

KustantajaElsevier

Julkaisuvuosi2021

JournalInternational Journal of Forecasting

Tietokannassa oleva lehden nimiInternational Journal of Forecasting

Vuosikerta37

Numero1

Aloitussivu151

Lopetussivu170

ISSN0169-2070

eISSN1872-8200

DOIhttps://doi.org/10.1016/j.ijforecast.2020.03.008

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/48817701


Tiivistelmä

We apply the boosting estimation method in order to investigate to what extent and at what horizons macroeconomic time series have nonlinear predictability that comes from their own history. Our results indicate that the U.S. macroeconomic time series have more exploitable nonlinear predictability than previous studies have found. On average, the most favorable out-of-sample performance is obtained via a two-stage procedure, where a conventional linear prediction model is fitted first and the boosting technique is applied to build a nonlinear model for its residuals.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 16:07