A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Degree growth of lattice equations defined on a 3 × 3 stencil
Tekijät: Hietarinta, Jarmo
Kustantaja: Episciences
Julkaisuvuosi: 2024
Journal: Open Communications in Nonlinear Mathematical Physics
Tietokannassa oleva lehden nimi: Open Communications in Nonlinear Mathematical Physics
Vuosikerta: 2024
Numero: Special Issue 1
Aloitussivu: 1
Lopetussivu: 19
eISSN: 2802-9356
DOI: https://doi.org/10.46298/ocnmp.11589
Verkko-osoite: https://doi.org/10.46298/ocnmp.11589
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/484743359
We study complexity in terms of degree growth of one-component lattice equations defined on a 3 × 3 stencil. The equations include two in Hirota bilinear form and the Boussinesq equations of regular, modified and Schwarzian type. Initial values are given on a staircase or on a corner configuration and depend linearly or rationally on a special variable, for example fn,m = αn,m z + βn,m, in which case we count the degree in z of the iterates. Known integrable cases have linear growth if only one initial values contains z, and quadratic growth if all initial values contain z. Even a small deformation of an integrable equation changes the degree growth from polynomial to exponential, because the deformation will change factorization properties and thereby prevent cancellations.
Ladattava julkaisu This is an electronic reprint of the original article. |