A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Benchmarking ML Approaches to UWB-Based Range-Only Posture Recognition for Human Robot-Interaction




TekijätSalimi, Salma; Salimpour, Sahar; Queralta, Jorge Peña; Moreira Bessa, Wallace; Westerlund, Tomi

KustantajaInstitute of Electrical and Electronics Engineers (IEEE)

Julkaisuvuosi2025

JournalIEEE Sensors Journal

Tietokannassa oleva lehden nimiIEEE Sensors Journal

Vuosikerta25

Numero1

Aloitussivu1350

Lopetussivu1358

ISSN1530-437X

eISSN2379-9153

DOIhttps://doi.org/10.1109/JSEN.2024.3493256

Verkko-osoitehttp://doi.org/10.1109/jsen.2024.3493256

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/470932019

Preprintin osoitehttps://arxiv.org/abs/2408.15717


Tiivistelmä

Human pose estimation involves detecting and tracking the positions of various body parts using input data from sources such as images, videos, or motion and inertial sensors. This paper presents a novel approach to human pose estimation using machine learning algorithms to predict human posture and translate them into robot motion commands using ultra-wideband (UWB) nodes, as an alternative to motion sensors. The study utilizes five UWB sensors implemented on the human body to enable the classification of still poses and more robust posture recognition. This approach ensures effective posture recognition across a variety of subjects. These range measurements serve as input features for posture prediction models, which are implemented and compared for accuracy. For this purpose, machine learning algorithms including K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and deep Multi-Layer Perceptron (MLP) neural network are employed and compared in predicting corresponding postures. We demonstrate the proposed approach for real-time control of different mobile/aerial robots with inference implemented in a ROS 2 node. Experimental results demonstrate the efficacy of the approach, showcasing successful prediction of human posture and corresponding robot movements with high accuracy.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-26-03 at 15:47