A4 Refereed article in a conference publication

Short and Long Term Vessel Movement Prediction for Maritime Traffic




AuthorsFarahnakian, Farshad; Farahnakian, Fahimeh; Sheikh, Javad; Nevalainen, Paavo; Heikkonen, Jukka

EditorsPickl, Stefan; Hämmerli, Bernhard; Mattila, Päivi; Sevillano, Annaleena

Conference nameCritical Information Infrastructures Security

PublisherSpringer Science and Business Media Deutschland GmbH

Publication year2024

JournalLecture Notes in Computer Science

Book title Critical Information Infrastructures Security 18th International Conference, CRITIS 2023, Helsinki Region, Finland, September 13–15, 2023, Revised Selected Papers

Journal name in sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Issue284

First page 62

Last page80

ISBN978-3-031-62138-3

eISBN978-3-031-62139-0

ISSN0302-9743

eISSN1611-3349

DOIhttps://doi.org/10.1007/978-3-031-62139-0_4

Web address https://link.springer.com/chapter/10.1007/978-3-031-62139-0_4


Abstract
In maritime traffic management, the precise prediction of vessel trajectories is paramount, given the industry’s substantial dependence on vessel transportation for the transport of commodities, passengers, and energy resources. This study proposes two innovative prediction methodologies (short-term and long-term) for vessel movements. Furthermore, we introduce a novel evaluation metric designed to quantitatively assess the efficacy of the proposed short-term prediction method in forecasting vessel trajectories. The presented methodologies were empirically tested, employing two-month Automatic Identification System (AIS) data collected from the Baltic Sea to examine their performance. Preliminary experimental outcomes indicate a superior level of accuracy embodied in the short-term prediction method. On the other hand, the long-term prediction method demonstrated enhanced performance metrics in the context of computational speed and memory utilization. These observations underscore the potential of the proposed methodologies to amplify efficiency and augment safety standards in marine traffic management.


Funding information in the publication
This work is part of the AI-ARC project funded by the European Union’s Horizon 2020 research and innovation programme under grant 96 agreement No. 101021271.


Last updated on 2025-27-01 at 19:03