A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Forecasting daily total pollen concentrations on a global scale




TekijätMakra, László; Coviello, Luca; Gobbi, Andrea; Jurman, Giuseppe; Furlanello, Cesare; Brunato, Mauro; Ziska, Lewis H.; Hess, Jeremy J.; Damialis, Athanasios; Garcia, Maria Pilar Plaza; Tusnády, Gábor; Czibolya, Lilit; Ihász, István; Deák, Áron József; Mikó, Edit; Dorner, Zita; Harry, Susan K.; Bruffaerts, Nicolas; Packeu, Ann; Saarto, Annika; Toiviainen, Linnea; Louna-Korteniemi, Maria; Pätsi, Sanna; Thibaudon, Michel; Oliver, Gilles; Charalampopoulos, Athanasios; Vokou, Despoina; Przedpelska-Wasowicz, Ewa Maria; Guðjohnsen, Ellý Renée; Bonini, Maira; Celenk, Sevcan; Ozaslan, Cumali; Oh, Jae-Won; Sullivan, Krista; Ford, Linda; Kelly, Michelle; Levetin, Estelle; Myszkowska, Dorota; Severova, Elena; Gehrig, Regula; Calderón-Ezquerro, María Del Carmen; Guerra, César Guerrero; Leiva-Guzmán, Manuel Andres; Ramón, Germán Darío; Barrionuevo, Laura Beatriz; Peter, Jonny; Berman, Dilys; Katelaris, Connie H.; Davies, Janet M.; Burton, Pamela; Beggs, Paul J.; Vergamini, Sandra María; Valencia-Barrera, Rosa María; Traidl-Hoffmann, Claudia

KustantajaWiley-Blackwell

Julkaisuvuosi2024

JournalAllergy

Tietokannassa oleva lehden nimiAllergy

Lehden akronyymiAllergy

Vuosikerta79

Numero8

Aloitussivu2173

Lopetussivu2185

ISSN0105-4538

eISSN1398-9995

DOIhttps://doi.org/10.1111/all.16227

Verkko-osoitehttps://onlinelibrary.wiley.com/doi/10.1111/all.16227

LisätietojaCorrection to "Forecasting Daily Total Pollen Concentrations on a Global Scale", PMID: 40326766, https://doi.org/10.1111/all.16577


Tiivistelmä

Background: There is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero-allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts.

Methods: The study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values.

Results: The best pollen forecasts include Mexico City (R2(DL_7) ≈ .7), and Santiago (R2(DL_7) ≈ .8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R2(DL_7) ≈ .4) and Seoul (R2(DL_7) ≈ .1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28-100 cm depth, and past soil temperature in 0-7 cm depth. City-related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan.

Conclusions: This new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.


Julkaisussa olevat rahoitustiedot
The study was partly implemented in the frame of the EU-COST Action ADOPT (New approaches in detection of pathogens and aeroallergens), Grant Number CA18226 (EU Framework Program Horizon 2020).


Last updated on 2025-04-07 at 07:25