A1 Refereed original research article in a scientific journal
Forecasting daily total pollen concentrations on a global scale
Authors: Makra, László; Coviello, Luca; Gobbi, Andrea; Jurman, Giuseppe; Furlanello, Cesare; Brunato, Mauro; Ziska, Lewis H.; Hess, Jeremy J.; Damialis, Athanasios; Garcia, Maria Pilar Plaza; Tusnády, Gábor; Czibolya, Lilit; Ihász, István; Deák, Áron József; Mikó, Edit; Dorner, Zita; Harry, Susan K.; Bruffaerts, Nicolas; Packeu, Ann; Saarto, Annika; Toiviainen, Linnea; Louna-Korteniemi, Maria; Pätsi, Sanna; Thibaudon, Michel; Oliver, Gilles; Charalampopoulos, Athanasios; Vokou, Despoina; Przedpelska-Wasowicz, Ewa Maria; Guðjohnsen, Ellý Renée; Bonini, Maira; Celenk, Sevcan; Ozaslan, Cumali; Oh, Jae-Won; Sullivan, Krista; Ford, Linda; Kelly, Michelle; Levetin, Estelle; Myszkowska, Dorota; Severova, Elena; Gehrig, Regula; Calderón-Ezquerro, María Del Carmen; Guerra, César Guerrero; Leiva-Guzmán, Manuel Andres; Ramón, Germán Darío; Barrionuevo, Laura Beatriz; Peter, Jonny; Berman, Dilys; Katelaris, Connie H.; Davies, Janet M.; Burton, Pamela; Beggs, Paul J.; Vergamini, Sandra María; Valencia-Barrera, Rosa María; Traidl-Hoffmann, Claudia
Publisher: Wiley-Blackwell
Publication year: 2024
Journal: Allergy
Journal name in source: Allergy
Journal acronym: Allergy
Volume: 79
Issue: 8
First page : 2173
Last page: 2185
ISSN: 0105-4538
eISSN: 1398-9995
DOI: https://doi.org/10.1111/all.16227
Web address : https://onlinelibrary.wiley.com/doi/10.1111/all.16227
Additional information: Correction to "Forecasting Daily Total Pollen Concentrations on a Global Scale", PMID: 40326766, https://doi.org/10.1111/all.16577
Background: There is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero-allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts.
Methods: The study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values.
Results: The best pollen forecasts include Mexico City (R2(DL_7) ≈ .7), and Santiago (R2(DL_7) ≈ .8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R2(DL_7) ≈ .4) and Seoul (R2(DL_7) ≈ .1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28-100 cm depth, and past soil temperature in 0-7 cm depth. City-related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan.
Conclusions: This new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.
Funding information in the publication:
The study was partly implemented in the frame of the EU-COST Action ADOPT (New approaches in detection of pathogens and aeroallergens), Grant Number CA18226 (EU Framework Program Horizon 2020).