A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Confusion prediction from eye-tracking data: Experiments with machine learning




TekijätJoni Salminen, Mridul Nagpal, Haewoon Kwak, Jisun An, Soongyo Jung, Bernard J Jansen

Konferenssin vakiintunut nimiInternational Conference on Information Systems and Technologies

KustantajaAssociation for Computing Machinery

Julkaisuvuosi2019

Kokoomateoksen nimiicist 2019: Proceedings of the 9th International Conference on Information Systems and Technologies

Tietokannassa oleva lehden nimiACM International Conference Proceeding Series

ISBN978-1-4503-6292-4

DOIhttps://doi.org/10.1145/3361570.3361577

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/45654361


Tiivistelmä

Predicting user confusion can help improve information presentation on websites, mobile apps, and virtual reality interfaces. One promising information source for such prediction is eye-tracking data about gaze movements on the screen. Coupled with think-aloud records, we explore if user's confusion is correlated with primarily fixation-level features. We find that random forest achieves an accuracy of more than 70% when prediction user confusion using only fixation features. In addition, adding user-level features (age and gender) improves the accuracy to more than 90%. We also find that balancing the classes before training improves performance. We test two balancing algorithms, Synthetic Minority Over Sampling Technique (SMOTE) and Adaptive Synthetic Sampling (ADASYN) finding that SMOTE provides a higher performance increase. Overall, this research contains implications for researchers interested in inferring users' cognitive states from eye-tracking data.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 12:15