A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

A new subclass of the starlike functions




TekijätHesam Mahzoon, Rahim Kargar, Janusz Sokol

KustantajaScientific and Technical Research Council of Turkey

Julkaisuvuosi2019

JournalTurkish Journal of Mathematics

Vuosikerta43

Numero5

Aloitussivu2354

Lopetussivu2365

Sivujen määrä12

ISSN1300-0098

eISSN1303-6149

DOIhttps://doi.org/10.3906/mat-1906-64

Verkko-osoitehttp://journals.tubitak.gov.tr/math/issues/mat-19-43-5/mat-43-5-23-1906-64.pdf

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/Publication/42411498


Tiivistelmä
Motivated by the R{\o}nning--starlike class [Proc Amer Math Soc {\bf118}, no. 1, 189--196, 1993], we introduce new class $\mathcal{S}^*_c$ includes of analytic and normalized functions $f$ which satisfy the inequality\begin{equation*}  {\rm Re}\left\{\frac{zf'(z)}{f(z)}\right\}\geq\left|\frac{f(z)}{z}-1\right|\quad(|z|<1).\end{equation*}In this paper, we first give some examples which belong to the class $\mathcal{S}^*_c$. Also, we show that if $f\in\mathcal{S}^*_c$ then ${\rmRe} \{f(z)/z\}>1/2$ in $|z|<1$ (Marx--Strohh\"{a}cker problem). Afterwards, upper and lower bounds for $|f(z)|$ are obtained where $f$ belongs to the class $\mathcal{S}^*_c$.We also prove that if $f\in\mathcal{S}^*_c$ and $\alpha\in[0,1)$, then $f$ is starlike of order $\alpha$ in the disc $|z|<(1-\alpha)/(2-\alpha)$. At the end, we estimate logarithmic coefficients, the initial coefficients and Fekete--Szeg\"{o} problem for functions $f\in \mathcal{S}^*_c$.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 16:31