A1 Refereed original research article in a scientific journal

A new subclass of the starlike functions




AuthorsHesam Mahzoon, Rahim Kargar, Janusz Sokol

PublisherScientific and Technical Research Council of Turkey

Publication year2019

JournalTurkish Journal of Mathematics

Volume43

Issue5

First page 2354

Last page2365

Number of pages12

ISSN1300-0098

eISSN1303-6149

DOIhttps://doi.org/10.3906/mat-1906-64

Web address http://journals.tubitak.gov.tr/math/issues/mat-19-43-5/mat-43-5-23-1906-64.pdf

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/Publication/42411498


Abstract
Motivated by the R{\o}nning--starlike class [Proc Amer Math Soc {\bf118}, no. 1, 189--196, 1993], we introduce new class $\mathcal{S}^*_c$ includes of analytic and normalized functions $f$ which satisfy the inequality\begin{equation*}  {\rm Re}\left\{\frac{zf'(z)}{f(z)}\right\}\geq\left|\frac{f(z)}{z}-1\right|\quad(|z|<1).\end{equation*}In this paper, we first give some examples which belong to the class $\mathcal{S}^*_c$. Also, we show that if $f\in\mathcal{S}^*_c$ then ${\rmRe} \{f(z)/z\}>1/2$ in $|z|<1$ (Marx--Strohh\"{a}cker problem). Afterwards, upper and lower bounds for $|f(z)|$ are obtained where $f$ belongs to the class $\mathcal{S}^*_c$.We also prove that if $f\in\mathcal{S}^*_c$ and $\alpha\in[0,1)$, then $f$ is starlike of order $\alpha$ in the disc $|z|<(1-\alpha)/(2-\alpha)$. At the end, we estimate logarithmic coefficients, the initial coefficients and Fekete--Szeg\"{o} problem for functions $f\in \mathcal{S}^*_c$.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 16:31