Vertaisarvioitu alkuperäisartikkeli tai data-artikkeli tieteellisessä aikakauslehdessä (A1)

A new subclass of the starlike functions

Julkaisun tekijät: Hesam Mahzoon, Rahim Kargar, Janusz Sokol

Kustantaja: Scientific and Technical Research Council of Turkey

Julkaisuvuosi: 2019

Journal: Turkish Journal of Mathematics

Volyymi: 43

Julkaisunumero: 5

Sivujen määrä: 12

ISSN: 1300-0098

eISSN: 1303-6149



Rinnakkaistallenteen osoite:

Motivated by the R{\o}nning--starlike class [Proc Amer Math Soc {\bf118}, no. 1, 189--196, 1993], we introduce new class $\mathcal{S}^*_c$ includes of analytic and normalized functions $f$ which satisfy the inequality\begin{equation*} {\rm Re}\left\{\frac{zf'(z)}{f(z)}\right\}\geq\left|\frac{f(z)}{z}-1\right|\quad(|z|<1).\end{equation*}In this paper, we first give some examples which belong to the class $\mathcal{S}^*_c$. Also, we show that if $f\in\mathcal{S}^*_c$ then ${\rmRe} \{f(z)/z\}>1/2$ in $|z|<1$ (Marx--Strohh\"{a}cker problem). Afterwards, upper and lower bounds for $|f(z)|$ are obtained where $f$ belongs to the class $\mathcal{S}^*_c$.We also prove that if $f\in\mathcal{S}^*_c$ and $\alpha\in[0,1)$, then $f$ is starlike of order $\alpha$ in the disc $|z|<(1-\alpha)/(2-\alpha)$. At the end, we estimate logarithmic coefficients, the initial coefficients and Fekete--Szeg\"{o} problem for functions $f\in \mathcal{S}^*_c$.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.

Last updated on 2021-24-06 at 11:33