A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Resolution Transfer in Cancer Classification Based on Amplification Patterns




TekijätAdhikari Prem Raj, Hollmén Jaakko

ToimittajaNathalie Japkowicz, Stan Matwin

Konferenssin vakiintunut nimiInternational Conference on Discovery Science

Julkaisuvuosi2015

Lehti:Lecture Notes in Computer Science

Kokoomateoksen nimiDiscovery Science: 18th International Conference, DS 2015, Banff, AB, Canada, October 4-6, 2015. Proceedings

Sarjan nimiLecture Notes in Computer Science

Vuosikerta9356

Aloitussivu1

Lopetussivu8

Sivujen määrä8

ISBN978-3-319-24281-1

ISSN0302-9743

DOIhttps://doi.org/10.1007/978-3-319-24282-8_1

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/3890358


Tiivistelmä

In the current scientific age, the measurement technology has considerably improved and diversified producing data in different representations. Traditional machine learning and data mining algorithms can handle data only in a single representation in their standard form. In this contribution, we address an important challenge encountered in data analysis: what to do when the data to be analyzed are represented differently with regards to the resolution? Specifically, in classification, how to train a classifier when class labels are available only in one resolution and missing in the other resolutions? The proposed methodology learns a classifier in one data resolution and transfers it to learn the class labels in a different resolution. Furthermore, the methodology intuitively works as a dimensionality reduction method. The methodology is evaluated on a simulated dataset and finally used to classify cancers in a real–world multiresolution chromosomal aberration dataset producing plausible results.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:45