A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Resolution Transfer in Cancer Classification Based on Amplification Patterns
Tekijät: Adhikari Prem Raj, Hollmén Jaakko
Toimittaja: Nathalie Japkowicz, Stan Matwin
Konferenssin vakiintunut nimi: International Conference on Discovery Science
Julkaisuvuosi: 2015
Lehti:: Lecture Notes in Computer Science
Kokoomateoksen nimi: Discovery Science: 18th International Conference, DS 2015, Banff, AB, Canada, October 4-6, 2015. Proceedings
Sarjan nimi: Lecture Notes in Computer Science
Vuosikerta: 9356
Aloitussivu: 1
Lopetussivu: 8
Sivujen määrä: 8
ISBN: 978-3-319-24281-1
ISSN: 0302-9743
DOI: https://doi.org/10.1007/978-3-319-24282-8_1
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/3890358
In the current scientific age, the measurement technology has considerably improved and diversified producing data in different representations. Traditional machine learning and data mining algorithms can handle data only in a single representation in their standard form. In this contribution, we address an important challenge encountered in data analysis: what to do when the data to be analyzed are represented differently with regards to the resolution? Specifically, in classification, how to train a classifier when class labels are available only in one resolution and missing in the other resolutions? The proposed methodology learns a classifier in one data resolution and transfers it to learn the class labels in a different resolution. Furthermore, the methodology intuitively works as a dimensionality reduction method. The methodology is evaluated on a simulated dataset and finally used to classify cancers in a real–world multiresolution chromosomal aberration dataset producing plausible results.
Ladattava julkaisu This is an electronic reprint of the original article. |