A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Information bottleneck in peptide conformation determination by x-ray absorption spectroscopy




TekijätEronen Eemeli A., Vladyka Anton, Gerbon Florent, Sahle Christoph J., Niskanen Johannes

KustantajaIOP Publishing

Julkaisuvuosi2024

JournalJournal of Physics Communications

Lehden akronyymiJ. Phys. Commun.

Artikkelin numero025001

Vuosikerta8

Numero2

DOIhttps://doi.org/10.1088/2399-6528/ad1f73

Verkko-osoitehttps://iopscience.iop.org/article/10.1088/2399-6528/ad1f73

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/386797904


Tiivistelmä

We apply a recently developed technique utilizing machine learning for statistical analysis of computational nitrogen K-edge spectra of aqueous triglycine. This method, the emulator-based component analysis, identifies spectrally relevant structural degrees of freedom from a data set filtering irrelevant ones out. Thus tremendous reduction in the dimensionality of the ill-posed nonlinear inverse problem of spectrum interpretation is achieved. Structural and spectral variation across the sampled phase space is notable. Using these data, we train a neural network to predict the intensities of spectral regions of interest from the structure. These regions are defined by the temperature-difference profile of the simulated spectra, and the analysis yields a structural interpretation for their behavior. Even though the utilized local many-body tensor representation implicitly encodes the secondary structure of the peptide, our approach proves that this information is irrecoverable from the spectra. A hard x-ray Raman scattering experiment confirms the overall sensibility of the simulated spectra, but the predicted temperature-dependent effects therein remain beyond the achieved statistical confidence level.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 19:41