A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

A comparison of AUC estimators in small-sample studies




TekijätAirola A, Pahikkala T, Waegeman W, De Baets B, Salakoski T

ToimittajaDzeroski Saso, Geurts Pierre, Rousu Juho

Julkaisuvuosi2010

JournalJMLR workshop and conference proceedings

Kokoomateoksen nimiProceedings of the third International Workshop on Machine Learning in Systems Biology

Tietokannassa oleva lehden nimiPROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MACHINE LEARNING IN SYSTEMS BIOLOGY

Lehden akronyymiJMLR WORKSH CONF PRO

Sarjan nimiProceedings of Machine Learning Research

Vuosikerta8

Aloitussivu3

Lopetussivu13

Sivujen määrä11

ISSN1938-7288

Verkko-osoitehttp://jmlr.csail.mit.edu/proceedings/papers/v8/airola10a/airola10a.pdf


Tiivistelmä
Reliable estimation of the classification performance of learned predictive models is difficult, when working in the small sample setting. When dealing with biological data it is often the case that separate test data cannot be afforded. Cross-validation is in this case a typical strategy for estimating the performance. Recent results, further supported by experimental evidence presented in this article, show that many standard approaches to cross-validation suffer from extensive bias or variance when the area under ROC curve (AUC) is used as performance measure. We advocate the use of leave-pair-out cross-validation (LPOCV) for performance estimation, as it avoids many of these problems. A method previously proposed by us can be used to efficiently calculate this estimate for regularized least-squares (RLS) based learners.



Last updated on 2024-26-11 at 12:15