Structural rigidity of generalised Volterra operators on Hp




Miihkinen S, Nieminen PJ, Saksman E, Tylli H-O

PublisherElsevier Masson SAS

2018

Bulletin des Sciences Mathématiques

148

1

13

13

0007-4497

DOIhttps://doi.org/10.1016/j.bulsci.2018.06.005(external)

https://doi.org/10.1016/j.bulsci.2018.06.005(external)

https://arxiv.org/abs/1710.01252(external)



We show that the non-compact generalised analytic Volterra operators $T_g$, where $g in BMOA$, have the following structural rigidity property on the Hardy spaces $H^p$ for $1 le p < infty$ and $p
neq 2$: if $T_g$ is bounded below on an infinite-dimensional subspace $M subset H^p$, then $M$ contains a subspace linearly isomorphic to $ell^p$. This implies in particular that any Volterra operator $T_g: H^p to H^p$ is $ell^2$-singular for $p neq 2$.



Last updated on 2024-26-11 at 21:26