Surjective Two-Neighbor Cellular Automata on Prime Alphabets
: Jarkko Kari, Ville Salo, Ilkka Törmä
: Jarkko Kari, Martin Kutrib, Andreas Malcher
: Giessen
: 2013
: IFIG Research Reports
: Proceedings 19th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA 2013): Exploratory Papers
: IFIG Research Reports
: 31
: 38
: 8
: http://www.informatik.uni-giessen.de/reports/Report1302.pdf
In this article, we present a simple proof for the fact that a surjective cellular automaton with neighborhood size 2 on a prime alphabet is permutive in some coordinate. We discuss the optimality of this result, and the existence of non-closing cellular automata of a given neighborhood and alphabet size.