A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Surjective Two-Neighbor Cellular Automata on Prime Alphabets
Tekijät: Jarkko Kari, Ville Salo, Ilkka Törmä
Toimittaja: Jarkko Kari, Martin Kutrib, Andreas Malcher
Kustannuspaikka: Giessen
Julkaisuvuosi: 2013
Journal: IFIG Research Reports
Kokoomateoksen nimi: Proceedings 19th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA 2013): Exploratory Papers
Sarjan nimi: IFIG Research Reports
Aloitussivu: 31
Lopetussivu: 38
Sivujen määrä: 8
Verkko-osoite: http://www.informatik.uni-giessen.de/reports/Report1302.pdf
Tiivistelmä
In this article, we present a simple proof for the fact that a surjective cellular automaton with neighborhood size 2 on a prime alphabet is permutive in some coordinate. We discuss the optimality of this result, and the existence of non-closing cellular automata of a given neighborhood and alphabet size.
In this article, we present a simple proof for the fact that a surjective cellular automaton with neighborhood size 2 on a prime alphabet is permutive in some coordinate. We discuss the optimality of this result, and the existence of non-closing cellular automata of a given neighborhood and alphabet size.