An embedding into an Orlicz space for $L^1_1$-functions from irregular domains
: Petteri Harjulehto and Ritva Hurri-Syrjänen
: Mark L. Agranovsky, Bar-Ilan University, Ramat-Gan, Israel, Matania Ben-Artzi, Hebrew University of Jerusalem, Jerusalem, Israel, Greg Galloway, University of Miami, Coral Gables, FL, Lavi Karp, ORT Braude College, Karmiel, Israel, Dmitry Khavinson, University of South Florida, Tampa, FL, Simeon Reich, Technion-Israel Institute of Technology, Haifa, Israel, Gilbert Weinstein, Ariel University, Ariel, Israel and Lawrence Zalcman, Bar-Ilan University, Ramat-Gan, Israel, Editors
: Complex Analysis and Dynamical Systems VI
: 2015
: Complex Analysis and Dynamical Systems VI: Part 1: PDE, Differential Geometry, Radon Transform
: Contemporary mathematics
: 653
: 177
: 189
: 3
: 978-1-4704-1653-9
: 1098-3627
DOI: https://doi.org/10.1090/conm/653
We prove an embedding into an Orlicz space for $L^1_1$-functions defined in irregular bounded John domains of the Euclidean $n$-space.
We show that the result is essentially sharp.
We study Orlicz embeddings for $L^1_p$-funtions, $1