An embedding into an Orlicz space for $L^1_1$-functions from irregular domains




Petteri Harjulehto and Ritva Hurri-Syrjänen

Mark L. Agranovsky, Bar-Ilan University, Ramat-Gan, Israel, Matania Ben-Artzi, Hebrew University of Jerusalem, Jerusalem, Israel, Greg Galloway, University of Miami, Coral Gables, FL, Lavi Karp, ORT Braude College, Karmiel, Israel, Dmitry Khavinson, University of South Florida, Tampa, FL, Simeon Reich, Technion-Israel Institute of Technology, Haifa, Israel, Gilbert Weinstein, Ariel University, Ariel, Israel and Lawrence Zalcman, Bar-Ilan University, Ramat-Gan, Israel, Editors

Complex Analysis and Dynamical Systems VI

2015

Complex Analysis and Dynamical Systems VI: Part 1: PDE, Differential Geometry, Radon Transform

Contemporary mathematics

653

177

189

3

978-1-4704-1653-9

1098-3627

DOIhttps://doi.org/10.1090/conm/653



We prove an embedding into an Orlicz space for $L^1_1$-functions defined in  irregular  bounded John domains of the Euclidean $n$-space.



We show that the result is essentially sharp.

We study Orlicz embeddings for $L^1_p$-funtions, $1



Last updated on 2024-26-11 at 18:13