A3 Refereed book chapter or chapter in a compilation book

An embedding into an Orlicz space for $L^1_1$-functions from irregular domains




AuthorsPetteri Harjulehto and Ritva Hurri-Syrjänen

EditorsMark L. Agranovsky, Bar-Ilan University, Ramat-Gan, Israel, Matania Ben-Artzi, Hebrew University of Jerusalem, Jerusalem, Israel, Greg Galloway, University of Miami, Coral Gables, FL, Lavi Karp, ORT Braude College, Karmiel, Israel, Dmitry Khavinson, University of South Florida, Tampa, FL, Simeon Reich, Technion-Israel Institute of Technology, Haifa, Israel, Gilbert Weinstein, Ariel University, Ariel, Israel and Lawrence Zalcman, Bar-Ilan University, Ramat-Gan, Israel, Editors

Conference nameComplex Analysis and Dynamical Systems VI

Publication year2015

Book title Complex Analysis and Dynamical Systems VI: Part 1: PDE, Differential Geometry, Radon Transform

Series titleContemporary mathematics

Volume653

First page 177

Last page189

Number of pages3

ISBN978-1-4704-1653-9

ISSN1098-3627

DOIhttps://doi.org/10.1090/conm/653


Abstract

We prove an embedding into an Orlicz space for $L^1_1$-functions defined in  irregular  bounded John domains of the Euclidean $n$-space.



We show that the result is essentially sharp.

We study Orlicz embeddings for $L^1_p$-funtions, $1



Last updated on 2024-26-11 at 18:13