A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Eternal non-Markovianity: from random unitary to Markov chain realisations




TekijätNina Megier, Dariusz Chruściński, Jyrki Piilo, Walter T. Strunz

KustantajaNATURE PUBLISHING GROUP

Julkaisuvuosi2017

JournalScientific Reports

Tietokannassa oleva lehden nimiSCIENTIFIC REPORTS

Lehden akronyymiSCI REP-UK

Artikkelin numero6379

Vuosikerta7

Sivujen määrä11

ISSN2045-2322

DOIhttps://doi.org/10.1038/s41598-017-06059-5

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/27562715


Tiivistelmä
The theoretical description of quantum dynamics in an intriguing way does not necessarily imply the underlying dynamics is indeed intriguing. Here we show how a known very interesting master equation with an always negative decay rate [eternal non-Markovianity (ENM)] arises from simple stochastic Schrodinger dynamics (random unitary dynamics). Equivalently, it may be seen as arising from a mixture of Markov (semi-group) open system dynamics. Both these approaches lead to a more general family of CPT maps, characterized by a point within a parameter triangle. Our results show how ENM quantum dynamics can be realised easily in the laboratory. Moreover, we find a quantum time-continuously measured (quantum trajectory) realisation of the dynamics of the ENM master equation based on unitary transformations and projective measurements in an extended Hilbert space, guided by a classical Markov process. Furthermore, a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) representation of the dynamics in an extended Hilbert space can be found, with a remarkable property: there is no dynamics in the ancilla state. Finally, analogous constructions for two qubits extend these results from non-CP-divisible to non-P-divisible dynamics.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 15:32