A1 Refereed original research article in a scientific journal

Eternal non-Markovianity: from random unitary to Markov chain realisations




AuthorsNina Megier, Dariusz Chruściński, Jyrki Piilo, Walter T. Strunz

PublisherNATURE PUBLISHING GROUP

Publication year2017

JournalScientific Reports

Journal name in sourceSCIENTIFIC REPORTS

Journal acronymSCI REP-UK

Article number6379

Volume7

Number of pages11

ISSN2045-2322

DOIhttps://doi.org/10.1038/s41598-017-06059-5

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/27562715


Abstract
The theoretical description of quantum dynamics in an intriguing way does not necessarily imply the underlying dynamics is indeed intriguing. Here we show how a known very interesting master equation with an always negative decay rate [eternal non-Markovianity (ENM)] arises from simple stochastic Schrodinger dynamics (random unitary dynamics). Equivalently, it may be seen as arising from a mixture of Markov (semi-group) open system dynamics. Both these approaches lead to a more general family of CPT maps, characterized by a point within a parameter triangle. Our results show how ENM quantum dynamics can be realised easily in the laboratory. Moreover, we find a quantum time-continuously measured (quantum trajectory) realisation of the dynamics of the ENM master equation based on unitary transformations and projective measurements in an extended Hilbert space, guided by a classical Markov process. Furthermore, a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) representation of the dynamics in an extended Hilbert space can be found, with a remarkable property: there is no dynamics in the ancilla state. Finally, analogous constructions for two qubits extend these results from non-CP-divisible to non-P-divisible dynamics.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 15:32