Locally finite ultrametric spaces and labeled trees




Dovgoshey Oleksiy, Kostikov Alexander

PublisherSpringer

2023

Journal of Mathematical Sciences

Journal of Mathematical Sciences (United States)

J. Math. Sci.

276

5

614

637

1573-8795

DOIhttps://doi.org/10.1007/s10958-023-06786-3

https://link.springer.com/journal/10958

https://arxiv.org/abs/2308.06626



It is shown that a locally finite ultrametric space (Xd) is generated by a labeled tree if and only if for every open ball B ⊆ X there is a point c ∈ B such that d(xc) = diam B whenever x ∈ B and x ≠ c. For every finite ultrametric space Y, we construct an ultrametric space Z having the smallest possible number of points such that Z is generated by a labeled tree and Y is isometric to a subspace of Z. It is proved that for a given Y such a space Z is unique up to isometry.



Last updated on 2024-26-11 at 10:44