A1 Refereed original research article in a scientific journal
Locally finite ultrametric spaces and labeled trees
Authors: Dovgoshey Oleksiy, Kostikov Alexander
Publisher: Springer
Publication year: 2023
Journal: Journal of Mathematical Sciences
Journal name in source: Journal of Mathematical Sciences (United States)
Journal acronym: J. Math. Sci.
Volume: 276
Issue: 5
First page : 614
Last page: 637
eISSN: 1573-8795
DOI: https://doi.org/10.1007/s10958-023-06786-3
Web address : https://link.springer.com/journal/10958
Preprint address: https://arxiv.org/abs/2308.06626
It is shown that a locally finite ultrametric space (X, d) is generated by a labeled tree if and only if for every open ball B ⊆ X there is a point c ∈ B such that d(x, c) = diam B whenever x ∈ B and x ≠ c. For every finite ultrametric space Y, we construct an ultrametric space Z having the smallest possible number of points such that Z is generated by a labeled tree and Y is isometric to a subspace of Z. It is proved that for a given Y such a space Z is unique up to isometry.