A1 Refereed original research article in a scientific journal

Locally finite ultrametric spaces and labeled trees




AuthorsDovgoshey Oleksiy, Kostikov Alexander

PublisherSpringer

Publication year2023

Journal: Journal of Mathematical Sciences

Journal name in sourceJournal of Mathematical Sciences (United States)

Journal acronymJ. Math. Sci.

Volume276

Issue5

First page 614

Last page637

eISSN1573-8795

DOIhttps://doi.org/10.1007/s10958-023-06786-3

Publication's open availability at the time of reportingNo Open Access

Publication channel's open availability Partially Open Access publication channel

Web address https://link.springer.com/journal/10958

Preprint addresshttps://arxiv.org/abs/2308.06626


Abstract

It is shown that a locally finite ultrametric space (Xd) is generated by a labeled tree if and only if for every open ball B ⊆ X there is a point c ∈ B such that d(xc) = diam B whenever x ∈ B and x ≠ c. For every finite ultrametric space Y, we construct an ultrametric space Z having the smallest possible number of points such that Z is generated by a labeled tree and Y is isometric to a subspace of Z. It is proved that for a given Y such a space Z is unique up to isometry.



Last updated on 26/11/2024 10:44:54 AM