A1 Refereed original research article in a scientific journal

Locally finite ultrametric spaces and labeled trees




AuthorsDovgoshey Oleksiy, Kostikov Alexander

PublisherSpringer

Publication year2023

JournalJournal of Mathematical Sciences

Journal name in sourceJournal of Mathematical Sciences (United States)

Journal acronymJ. Math. Sci.

Volume276

Issue5

First page 614

Last page637

eISSN1573-8795

DOIhttps://doi.org/10.1007/s10958-023-06786-3

Web address https://link.springer.com/journal/10958

Preprint addresshttps://arxiv.org/abs/2308.06626


Abstract

It is shown that a locally finite ultrametric space (Xd) is generated by a labeled tree if and only if for every open ball B ⊆ X there is a point c ∈ B such that d(xc) = diam B whenever x ∈ B and x ≠ c. For every finite ultrametric space Y, we construct an ultrametric space Z having the smallest possible number of points such that Z is generated by a labeled tree and Y is isometric to a subspace of Z. It is proved that for a given Y such a space Z is unique up to isometry.



Last updated on 2024-26-11 at 10:44