A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Distortion element in the automorphism group of a full shift




TekijätCallard Antonin, Salo Ville

KustantajaCambridge University Press

Julkaisuvuosi2023

JournalErgodic Theory and Dynamical Systems

Tietokannassa oleva lehden nimiErgodic Theory and Dynamical Systems

eISSN1469-4417

DOIhttps://doi.org/10.1017/etds.2023.67

Verkko-osoitehttps://doi.org/10.1017/etds.2023.67

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/181753731


Tiivistelmä

We show that there is a distortion element in a finitely generated subgroup G of the automorphism group of the full shift, namely an element of infinite order whose word norm grows polylogarithmically. As a corollary, we obtain a lower bound on the entropy dimension of any subshift containing a copy of G, and that a sofic shift’s automorphism group contains a distortion element if and only if the sofic shift is uncountable. We obtain also that groups of Turing machines and the higher-dimensional Brin–Thompson groups mV admit distortion elements; in particular, 2V (unlike V) does not admit a proper action on a CAT(0) cube complex. In each case, the distortion element roughly corresponds to the SMART machine of Cassaigne, Ollinger, and Torres-Avilés [A small minimal aperiodic reversible Turing machine. J. Comput. System Sci. 84 (2017), 288–301].


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 22:13