A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Arithmetical complexity of the language of generic limit sets of cellular automata




TekijätEsnay Solène J, Núñez Alonso, Törmä Ilkka

KustantajaACADEMIC PRESS INC ELSEVIER SCIENCE

Julkaisuvuosi2023

JournalJournal of Computer and System Sciences

Tietokannassa oleva lehden nimiJOURNAL OF COMPUTER AND SYSTEM SCIENCES

Lehden akronyymiJ COMPUT SYST SCI

Vuosikerta134

Aloitussivu20

Lopetussivu41

Sivujen määrä22

ISSN0022-0000

DOIhttps://doi.org/10.1016/j.jcss.2023.01.002

Verkko-osoitehttps://doi.org/10.1016/j.jcss.2023.01.002

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/179463124


Tiivistelmä
The generic limit set of a dynamical system is the smallest set that attracts most of the space in a topological sense: it is the smallest closed set with a comeager basin of attraction. Introduced by Milnor, it has been studied in the context of one-dimensional cellular automata by Djenaoui and Guillon, Delacourt, and Torma. In this article we present complexity bounds on realizations of generic limit sets of cellular automata with prescribed properties. We show that generic limit sets have a Pi(0)(2) language if they are inclusion-minimal, a Sigma(0)(1) language if the cellular automaton has equicontinuous points, and that these bounds are tight. We also prove that many chain mixing Pi(0)(2) subshifts and all chain mixing Delta(0)(2) subshifts are realizable as generic limit sets. As a corollary, we characterize the minimal subshifts that occur as generic limit sets. (c) 2023 Elsevier Inc. All rights reserved.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2025-26-05 at 08:31