A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Poisson PCA for matrix count data




TekijätVirta Joni, Artemiou Andreas

KustantajaELSEVIER SCI LTD

Julkaisuvuosi2023

JournalPattern Recognition

Tietokannassa oleva lehden nimiPATTERN RECOGNITION

Lehden akronyymiPATTERN RECOGN

Artikkelin numero 109401

Vuosikerta138

Sivujen määrä14

ISSN0031-3203

DOIhttps://doi.org/10.1016/j.patcog.2023.109401

Verkko-osoitehttps://doi.org/10.1016/j.patcog.2023.109401

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/179052245


Tiivistelmä
We develop a dimension reduction framework for data consisting of matrices of counts. Our model is based on the assumption of existence of a small amount of independent normal latent variables that drive the dependency structure of the observed data, and can be seen as the exact discrete analogue of a contaminated low-rank matrix normal model. We derive estimators for the model parameters and estab-lish their limiting normality. An extension of a recent proposal from the literature is used to estimate the latent dimension of the model. The method is shown to outperform both its vectorization-based com-petitors and matrix methods assuming the continuity of the data distribution in analysing simulated data and real world abundance data.(c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 14:13