A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Correlations of multiplicative functions in function fields




TekijätKlurman Oleksiy, Mangerel Alexander P, Teräväinen Joni

KustantajaWILEY

Julkaisuvuosi2023

JournalMathematika

Tietokannassa oleva lehden nimiMATHEMATIKA

Lehden akronyymiMATHEMATIKA

Vuosikerta69

Numero1

Aloitussivu155

Lopetussivu231

Sivujen määrä77

ISSN0025-5793

DOIhttps://doi.org/10.1112/mtk.12181

Verkko-osoitehttps://doi.org/10.1112/mtk.12181

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/177964138


Tiivistelmä
We develop an approach to study character sums, weighted by a multiplicative function f : F-q [t] -> S-1, of the formSigma(deg(G)=N G monic) f(G)chi 9G)xi(G),where chi is a Dirichlet character and xi is a short interval character over F-q[t]. We then deduce versions of the Matomaki-Radziwill theorem and Tao's two-point logarithmic Elliott conjecture over function fields F-q[t], where q is fixed. The former of these improves on work of Gorodetsky, and the latter extends the work of Sawin-Shusterman on correlations of the Mobius function for various values of q. Compared with the integer setting, we encounter a different phenomenon, specifically a low characteristic issue in the case that q is a power of 2. As an application of our results, we give a short proof of the function field version of a conjecture of Katai on classifying multiplicative functions with small increments, with the classification obtained and the proof being different from the existing one in the integer case. In a companion paper, we use these results to characterize the limiting behavior of partial sums of multiplicative functions in function fields and in particular to solve a "corrected" form of the Erdos discrepancy problem over If F-q[t].

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 19:29