O2 Muu julkaisu

A Significance Assessment of Diabetes Diagnostic Biomarkers Using Machine Learning




TekijätCui Ran, Daskalaki Elena, Hossain Md Zakir, Lenskiy Artem, Nolan Christopher J, Suominen Hanna

ToimittajaMichelle Honey, Charlene Ronquillo, Ting-Ting Lee, Lucy Westbrooke

Konferenssin vakiintunut nimiInternational Congress in Nursing Informatics

Julkaisuvuosi2021

JournalStudies in Health Technology and Informatics

Kokoomateoksen nimiNurses and Midwives in the Digital Age: Selected Papers, Posters and Panels from the 15th International Congress in Nursing Informatics

Tietokannassa oleva lehden nimiStudies in health technology and informatics

Lehden akronyymiStud Health Technol Inform

Sarjan nimiStudies in Health Technology and Informatics

Vuosikerta284

Aloitussivu36

Lopetussivu38

ISSN0926-9630

eISSN1879-8365

DOIhttps://doi.org/10.3233/SHTI210657

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/176265088


Tiivistelmä
Diabetes can be diagnosed by either Fasting Plasma Glucose or Hemoglobin A1c. The aim of our study was to explore the differences between the two criteria through the development of a machine learning based diabetes diagnostic algorithm and analysing the predictive contribution of each input biomarker. Our study concludes that fasting insulin is predictive of diabetes defined by FPG, but not by HbA1c. Besides, 28 other fasting blood biomarkers were not significant predictors of diabetes.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 22:34