A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

On the Hardy-Littlewood-Chowla conjecture on average




TekijätLichtman Jared Duker, Teräväinen Joni

KustantajaCAMBRIDGE UNIV PRESS

Julkaisuvuosi2022

JournalForum of Mathematics, Sigma

Tietokannassa oleva lehden nimiFORUM OF MATHEMATICS SIGMA

Lehden akronyymiFORUM MATH SIGMA

Artikkelin numero e57

Vuosikerta10

Sivujen määrä17

eISSN2050-5094

DOIhttps://doi.org/10.1017/fms.2022.54

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/176204264


Tiivistelmä

There has been recent interest in a hybrid form of the celebrated conjectures of Hardy-Littlewood and of Chowla. We prove that for any k,l >= 1 and distinct integers h(2), ..., h(k), a(1), ...., a(l), we have:

Sigma(n <= X) mu(n + h(1)) ... mu(n + h(k))Lambda(n + a(1)) ... Lambda(n + a(l)) = o(X)

for all except o(H) values of h(1) <= H, so long as H >= (log X) (l+epsilon). This improves on the range H >= (log X)(psi (X)) , psi(X) -> infinity, obtained in previous work of the first author. Our results also generalise from the Mobius function mu to arbitrary (non-pretentious) multiplicative functions.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 12:34