A1 Refereed original research article in a scientific journal
On the Hardy-Littlewood-Chowla conjecture on average
Authors: Lichtman Jared Duker, Teräväinen Joni
Publisher: CAMBRIDGE UNIV PRESS
Publication year: 2022
Journal: Forum of Mathematics, Sigma
Journal name in source: FORUM OF MATHEMATICS SIGMA
Journal acronym: FORUM MATH SIGMA
Article number: e57
Volume: 10
Number of pages: 17
eISSN: 2050-5094
DOI: https://doi.org/10.1017/fms.2022.54
Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/176204264
There has been recent interest in a hybrid form of the celebrated conjectures of Hardy-Littlewood and of Chowla. We prove that for any k,l >= 1 and distinct integers h(2), ..., h(k), a(1), ...., a(l), we have:
Sigma(n <= X) mu(n + h(1)) ... mu(n + h(k))Lambda(n + a(1)) ... Lambda(n + a(l)) = o(X)
for all except o(H) values of h(1) <= H, so long as H >= (log X) (l+epsilon). This improves on the range H >= (log X)(psi (X)) , psi(X) -> infinity, obtained in previous work of the first author. Our results also generalise from the Mobius function mu to arbitrary (non-pretentious) multiplicative functions.
Downloadable publication This is an electronic reprint of the original article. |