A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Towards Automated Screening of Literature on Artificial Intelligence in Nursing




TekijätMoen Hans, Alhuwail Dari, Björne Jari, Block Lori, Celin Sven, Jeon Eunjoo, Kreiner Karl, Mitchell James, Ožegović Gabriela, Ronquillo Charlene Esteban, Sequeira Lydia, Tayaben Jude, Topaz Maxim, Veeranki Sai Pavan Kumar, Peltonen Laura-Maria

ToimittajaOtero Paula, Scott Philip, Martin Susan Z, Huesig Elaine

Konferenssin vakiintunut nimiWorld congress on medical and health informatics

Julkaisuvuosi2022

JournalWorld congress on medical and health informatics

Kokoomateoksen nimiMEDINFO 2021: One World, One Health – Global Partnership for Digital Innovation

Tietokannassa oleva lehden nimiStudies in health technology and informatics

Lehden akronyymiStud Health Technol Inform

Sarjan nimiStudies in Health Technology and Informatics

Vuosikerta290

Aloitussivu637

Lopetussivu640

ISBN978-1-64368-264-8

eISBN978-1-64368-265-5

ISSN0926-9630

eISSN1879-8365

DOIhttps://doi.org/10.3233/SHTI220155

Verkko-osoitehttps://ebooks.iospress.nl/doi/10.3233/SHTI220155

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/176118735


Tiivistelmä
We evaluate the performance of multiple text classification methods used to automate the screening of article abstracts in terms of their relevance to a topic of interest. The aim is to develop a system that can be first trained on a set of manually screened article abstracts before using it to identify additional articles on the same topic. Here the focus is on articles related to the topic "artificial intelligence in nursing". Eight text classification methods are tested, as well as two simple ensemble systems. The results indicate that it is feasible to use text classification technology to support the manual screening process of article abstracts when conducting a literature review. The best results are achieved by an ensemble system, which achieves a F1-score of 0.41, with a sensitivity of 0.54 and a specificity of 0.96. Future work directions are discussed.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 19:58