Conformally invariant complete metrics
: Sugawa Toshiyuki, Vuorinen Matti, Zhang Tanran
Publisher: CAMBRIDGE UNIV PRESS
: 2023
: Mathematical Proceedings of the Cambridge Philosophical Society
: MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY
: MATH PROC CAMBRIDGE
: 28
: 0305-0041
: 1469-8064
DOI: https://doi.org/10.1017/S030500412200024X
: https://doi.org/10.1017/S030500412200024X
: https://research.utu.fi/converis/portal/detail/Publication/175747871
: https://arxiv.org/abs/2009.06465v1
For a domain G in the one-point compactification ¯Rn=Rn∪{∞} of Rn,n⩾2 , we characterise the completeness of the modulus metric μG in terms of a potential-theoretic thickness condition of ∂G, Martio’s M-condition [35]. Next, we prove that ∂G is uniformly perfect if and only if μG admits a minorant in terms of a Möbius invariant metric. Several applications to quasiconformal maps are given.