Conformally invariant complete metrics




Sugawa Toshiyuki, Vuorinen Matti, Zhang Tanran

PublisherCAMBRIDGE UNIV PRESS

2023

Mathematical Proceedings of the Cambridge Philosophical Society

MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY

MATH PROC CAMBRIDGE

28

0305-0041

1469-8064

DOIhttps://doi.org/10.1017/S030500412200024X

https://doi.org/10.1017/S030500412200024X

https://research.utu.fi/converis/portal/detail/Publication/175747871

https://arxiv.org/abs/2009.06465v1



For a domain G in the one-point compactification ¯Rn=Rn∪{∞} of Rn,n⩾2 , we characterise the completeness of the modulus metric μG in terms of a potential-theoretic thickness condition of ∂G, Martio’s M-condition [35]. Next, we prove that ∂G is uniformly perfect if and only if μG admits a minorant in terms of a Möbius invariant metric. Several applications to quasiconformal maps are given.


Last updated on 2024-26-11 at 23:41