Refereed journal article or data article (A1)
Conformally invariant complete metrics
List of Authors: Sugawa Toshiyuki, Vuorinen Matti, Zhang Tanran
Publisher: CAMBRIDGE UNIV PRESS
Publication year: 2023
Journal: Mathematical Proceedings of the Cambridge Philosophical Society
Journal name in source: MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY
Journal acronym: MATH PROC CAMBRIDGE
Number of pages: 28
ISSN: 0305-0041
eISSN: 1469-8064
DOI: http://dx.doi.org/10.1017/S030500412200024X
URL: https://doi.org/10.1017/S030500412200024X
Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/175747871
For a domain G in the one-point compactification ¯Rn=Rn∪{∞} of Rn,n⩾2 , we characterise the completeness of the modulus metric μG in terms of a potential-theoretic thickness condition of ∂G, Martio’s M-condition [35]. Next, we prove that ∂G is uniformly perfect if and only if μG admits a minorant in terms of a Möbius invariant metric. Several applications to quasiconformal maps are given.
Downloadable publication This is an electronic reprint of the original article. |