A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Optimization of Cavity-Based Negative Images to Boost Docking Enrichment in Virtual Screening




TekijätKurkinen Sami T., Lehtonen Jukka V., Pentikäinen Olli T., Postila Pekka A.

KustantajaAmerican Chemical Society

Julkaisuvuosi2022

JournalJournal of Chemical Information and Modeling

Tietokannassa oleva lehden nimiJournal of Chemical Information and Modeling

Vuosikerta62

Numero4

Aloitussivu1100

Lopetussivu1112

eISSN1549-960X

DOIhttps://doi.org/10.1021/acs.jcim.1c01145

Verkko-osoitehttps://pubs.acs.org/doi/abs/10.1021/acs.jcim.1c01145

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/175037617


Tiivistelmä

Molecular docking is a key in silico method used routinely in modern drug discovery projects. Although docking provides high-quality ligand binding predictions, it regularly fails to separate the active compounds from the inactive ones. In negative image-based rescoring (R-NiB), the shape/electrostatic potential (ESP) of docking poses is compared to the negative image of the protein’s ligand binding cavity. While R-NiB often improves the docking yield considerably, the cavity-based models do not reach their full potential without expert editing. Accordingly, a greedy search-driven methodology, brute force negative image-based optimization (BR-NiB), is presented for optimizing the models via iterative editing and benchmarking. Thorough and unbiased training, testing and stringent validation with a multitude of drug targets, and alternative docking software show that BR-NiB ensures excellent docking efficacy. BR-NiB can be considered as a new type of shape-focused pharmacophore modeling, where the optimized models contain only the most vital cavity information needed for effectively filtering docked actives from the inactive or decoy compounds. Finally, the BR-NiB code for performing the automated optimization is provided free-of-charge under MIT license via GitHub (https://github.com/jvlehtonen/brutenib) for boosting the success rates of docking-based virtual screening campaigns.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 17:20